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OUTLINE

• Motivation

• Tracking algorithm overview

• Challenges for the current tracking algorithm
• A potential solution

• Euclidean vs. geodesic distance
• Revisiting the Motion Coherence Theory
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MOTIVATION

Robotic manipulation of deformable linear objects (DLOs) has many
practical applications:

• Autonomous knot tying for surgical robots
• Autonomous cable routing for industrial robots

Figure 1: Left: Surgical robot performs knot-tying1. Right: Industrial robot
performs cable routing2.

1Lu, Chu, and Cheng 2016
2Keipour, Bandari, and Schaal 2022
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MOTIVATION

• Wire perception in 3D for manipulation tasks

• Directly obtain deformable object shape estimate from sensor data

Figure 2: System pipeline.
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TRACKING ALGORITHM OVERVIEW

• Assume a DLO can be represented by M nodes. The node positions
are denoted by Y = {y1, . . . , ym} ∈ RM×3, where ym ∈ R3 denotes the
position of the mth node.

• The DLO’s point cloud preceived by the depth camera is denoted by
X = {x1, . . . , xn} ∈ RN×3, where xn ∈ R3 denotes the position of the
nth point and there are N points in total.

• The nodes Y serves as the centroids and the point cloud X are the
randomly sampled points from the M Gaussian distributions.

Figure 3: Left: DLO point cloud and nodes visualized in 3D. Right: DLO point
cloud and nodes visualized in a 2D image.
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TRACKING ALGORITHM OVERVIEW

• Gaussian Mixture Model (GMM) clusters data into a finite number of
Gaussian distributions3.

• The parameters of the Gaussian distributions are unknown and need
to be estimated from the data given.

Figure 4: A simple example of GMM-based clustering.

3Bishop et al. 1995
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TRACKING ALGORITHM OVERVIEW

Figure 5: Finding node correspondence between frames.
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TRACKING ALGORITHM OVERVIEW

Assign correspondence for nodes in consecutive frames using the
Motion Coherence Theory4.

• Motion Coherence Theory: nodes close to each other tends to
move in similar directions.

Figure 6: The Motion Coherence Theory.

4Yuille and Grzywacz 1989
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TRACKING ALGORITHM OVERVIEW

DLO tracking:

1. Extract the nodes using Gaussian Mixture Model clustering.

2. Find the node correspondence between frames using the Motion
Coherence Theory.
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CURRENT CHALLENGES: TIP OCCLUSION

Figure 7: Tracking failure case.
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CURRENT CHALLENGES: TIP OCCLUSION

• Before processing the current frame that has occlusion, divide the
nodes into visible nodes and occluded nodes.

Figure 8: Dividing the object into two parts: Green: visible nodes, Red:
occluded Nodes.

• Since the visible nodes are staying stationary, the occluded nodes are
probably also staying stationary.
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PROBLEM STATEMENT

Given how the visible nodes move between frames, how should the
occluded nodes move?

Figure 9: Illustration of the problem.
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DETERMINE NEIGHBORING NODES

Motion Coherence Theory: nodes close to each other tends to move
in similar directions.

• The closer the two nodes are, the more ones motion affects
another.

Figure 10: The node of interest and the neighboring nodes right next to it.
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DETERMINE NEIGHBORING NODES

If the green node is moving upward, the neighboring nodes should
also move upward according to the Motion Coherence Theory.

Figure 11: Nodes that should move together based on Euclidean distance.
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DETERMINE NEIGHBORING NODES

Only the neighboring nodes that are also from the top part of the DLO
should move together.

Figure 12: Incorrect node grouping based on Euclidean distance.
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DETERMINE NEIGHBORING NODES

It is more appropriate to group nodes together based on their
geodesic distances to each other.

• Geodesic distance: the distance between two points on the
surface of the object5.

Figure 13: Nodes that should move together based on geodesic distance.

5Ruan, McConachie, and Berenson 2018
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MOTION COHERENCE THEORY: THE PROBLEM

If a node A from time step t − 1, corresponds to a node B from time
step t, then a velocity vector can be assigned at the position of node
A based on the difference in spatial positions of the nodes and the
time between two time steps. Assume the time difference between
frames is normalized.

Figure 14: Blue: node A from time step t − 1. Red: node B from time step t.
Green: velocity vector assigned at (x1, y1).
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MOTION COHERENCE THEORY: THE PROBLEM

• M nodes would lead to M! possible matches between two
consecutive frames and M! possible velocity assignments at the
nodes from time step t − 1.

• Some of these matches will produce smoother velocity fields than the
others. The Motion Coherence Theory proposes that the most
possible match is the one produces the most smooth velocity field6.

Figure 15: The two possible matches for M = 2. Blue: nodes from time step
t − 1. Red: nodes from time step t.

6Yuille and Grzywacz 1989
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THE MOTION COHERENCE THEORY

Formally, the Motion Coherence Theory states the following:

Let the measured velocity of node ym be M(u⃗m), where u⃗m is the true
velocity of the node.

The smoothing stage constructs a velocity field, v(Y), such that the
following functional is minimized:

E(v(Y), U⃗) =

M∑
m=1

∥v(ym)− M(u⃗m)∥2 + λ

∫
RD

∞∑
k=0

ck∥Dkv(Y)∥2

Where λ ≥ 0 and ck ≥ 0 are constants determining the strength of the
smoothing and Dk is the derivative operator.
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MOTION COHERENCE THEORY: SIMPLE EXAMPLE

Figure 16: The two possible matches for M = 2.

• Let λ = c0 = c1 = 1.
• Match 1:

k = 0: ∥v(A)∥2 + ∥v(B)∥2 = (22 + 02) + (22 + 02) = 8
k = 1: ∥v(A)− v(B)∥2 = |2 − 2|2 + |0 − 0|2 = 0
Total cost E = λ(c0 · 4 + c1 · 0) = 8

• Match 2:
k = 0: ∥v(A)∥2 + ∥v(B)∥2 = (22 + (−1)2) + (22 + 12) = 10
k = 1: ∥v(A)− v(B)∥2 = |2 − 2|2 + | − 1 − 1|2 = 4
Total cost E = λ(c0 · 6 + c1 · 4) = 14
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

The term λ
∫
RD

∑∞
k=0 ck∥Dkv(Y)∥2 measures the smoothness of the

velocity field. Two things that determine how the ck values interacts
with the velocity field:

• The form of ck (e.g., ck = 2k vs. ck = 2k)

• The value of ck (e.g., ck = 2k vs. ck = 200k)

The set of values {c0, . . . , ck} is called the smoothness operator.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• To investigate how the value of ck affects the velocity field, consider
smoothness operator of the form

c0 = 1, c1 = β2, c2 =
β4

4
, c3, . . . , ck = 0

• Three β values will be used to align the blue nodes to the black
nodess: β = 0.05, β = 1, β = 2

Figure 17: Caption
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• β = 0.05 for c0 = 1, c1 = β2, c2 = β4

4 , c3, . . . , ck = 0

• Source and target nodes completely aligned.

Figure 18: Alignment result for β = 0.05.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• β = 1 for c0 = 1, c1 = β2, c2 = β4

4 , c3, . . . , ck = 0

• Source and target nodes roughly aligned.

Figure 19: Alignment result for β = 1.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• β = 2 for c0 = 1, c1 = β2, c2 = β4

4 , c3, . . . , ck = 0

• Source and target nodes not aligned.

Figure 20: Alignment result for β = 2.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

In general, the larger the values of {c0, . . . , ck}, the less the nodes
will move relative to each other.

• Reminder:

E(v(Y), U⃗) =

M∑
m=1

∥v(ym)− M(u⃗m)∥2 + λ

∫
RD

∞∑
k=0

ck∥Dkv(Y)∥2
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• To investigate how smoothness operators with different form interacts
with the velocity field, three smoothness operators will be used to
impute the velocity of nodes y21, . . . , y30 given the velocity of nodes
y1, . . . , y20.

• All three smoothness operator will be written in terms of β. The
largest β value they can have (that still keeps the object deformable)
will be used.

Figure 21: Experiment setup.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Smoothness operator 1:

c0 = 1, c1 = β2, c2, . . . , ck = 0; β = 16

Figure 22: Velocity imputation result for smoothness operator 1.
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THE MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Minimizing λ
∫
R3

(
∥D0v(Y)∥2 + β2∥D1v(Y)∥2

)
• To minimize the second term, ∥D1v(y21)∥2, . . . , ∥D1v(y30)∥2 should be

as close to 0 as possible.

Figure 23: ∥Dm(v)∥2 vs. node x position plot for smoothness operator 1.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Smoothness operator 2:

c0 = 1, c1 = β2, c2 =
β4

4
, c3, . . . , ck = 0; β = 1

Figure 24: Velocity imputation result for smoothness operator 2.
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THE MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Minimizing λ
∫
R3

(
∥D0v(Y)∥2 + β2∥D1v(Y)∥2 + β4

4 ∥D2v(Y)∥2
)

Figure 25: ∥Dm(v)∥2 vs. node x position plot for smoothness operator 2.
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THE MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Minimizing λ
∫
R3

(
∥D0v(Y)∥2 + β2∥D1v(Y)∥2 + β4

4 ∥D2v(Y)∥2
)

vs.

• Minimizing λ
∫
R3

(
∥D0v(Y)∥2 + β2∥D1v(Y)∥2

)

Figure 26: Plot comparison between smoothness operator 1 and 2.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Smoothness operator 3:

c0 = 1, c1 =
β2

2
, c2 =

β4

8
, . . . , ck =

β2k

(k!2k)
; β = 0.3

Figure 27: Velocity imputation result for smoothness operator 3.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• All the ck values are non-zero, minimizing λ
∫
R3

∑∞
k=0 ck∥Dkv(Y)∥2

• Requiring all derivatives of v to be as smooth as possible.

Figure 28: ∥Dm(v)∥2 vs. node x position plot for smoothness operator 3.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

In general, the more higher derivatives the smoothness operator is
penalizing (the more non-zero ck terms for larger k),

• The smoother the overall imputation result.

• The smaller the values ck can have.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• How does noise affect the performance of difference smoothness
operators?

• A small amount of noise (uniform distribution from 0-1.5mm) was
added in a random direction (uniform distribution from 0-360 degrees)
to slightly displace the black nodes.

Figure 29: Velocity field with noise.

36 / 44



MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Smoothness operator 1:

c0 = 1, c1 = β2, c2, . . . , ck = 0; β = 16

Figure 30: Top: imputation without noise. Bottom: imputation with noise.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Smoothness operator 2:

c0 = 1, c1 = β2, c2 =
β4

4
, c3, . . . , ck = 0; β = 1

Figure 31: Top: imputation without noise. Bottom: imputation with noise.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

• Smoothness operator 3:

c0 = 1, c1 =
β2

2
, c2 =

β4

8
, . . . , ck =

β2k

(k!2k)
; β = 0.3

Figure 32: Top: imputation without noise. Bottom: imputation with noise.
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MOTION COHERENCE THEORY: SMOOTHNESS OPERATOR

Trade-off:

• Smoothness operators with more terms penalizing the higher
derivatives leads to a smoother velocity field. However, such
smoothness operators are also more vulnerable under the
influence of noise.
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SUMMARY

Improved DLO tracking under occlusion:

• Register the visible nodes

• Apply the Motion Coherence Theory to impute the velocities of
the occluded nodes

• Replace Euclidean distance with geodesic distance to better
represent the relative position between nodes

• Select an appropriate smoothness operator to balance between
velocity field smoothness and noise rejection
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RESULTS: STATIONARY OBJECT

Improved DLO tracking under occlusion
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https://drive.google.com/file/d/1QpNCLajpRpJMW20fW_Euu_Pe9HGXgNL4/view?usp=sharing


RESULTS: MOVING OBJECT

• Tracking a rod (rigid) and a rope (non-rigid) under occlusion.
• Both objects are pinned in the middle and partially occluded. The

right tip of the object was then pushed to create motion.
• The tracking parameters used for both objects are exactly the same.

Figure 33: Top row: rope. Bottom row: rod.
43 / 44



References

Bishop, Christopher M et al. (1995). Neural networks for pattern recognition. Oxford university press.

Keipour, Azarakhsh, Maryam Bandari, and Stefan Schaal (2022). “Efficient spatial representation and routing of deformable

one-dimensional objects for manipulation”. In: arXiv preprint arXiv:2202.06172.

Lu, Bo, Henry K Chu, and Li Cheng (2016). “Dynamic trajectory planning for robotic knot tying”. In: 2016 IEEE International

Conference on Real-time Computing and Robotics (RCAR). IEEE, pp. 180–185.

Ruan, Mengyao, Dale McConachie, and Dmitry Berenson (2018). “Accounting for directional rigidity and constraints in control for

manipulation of deformable objects without physical simulation”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, pp. 512–519.

Yuille, Alan L and Norberto M Grzywacz (1989). “A mathematical analysis of the motion coherence theory”. In: International Journal

of Computer Vision 3.2, pp. 155–175.

44 / 44


	References

