
Deformable Linear Object Tracking as
Non-Rigid Point Set Registration

Jingyi Xiang1

February 7, 2023

1Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign

ABOUT ME

My name is Jingyi Xiang; I am a junior
in Electrical Engineering and I joined
the Bretl Research Group in January
2022. My current research is focused
on deformable linear object perception
and tracking.

Fun facts about me:
• For a third of my life I studied

music and arts
• For another third of my life I

wanted to become a theoretical
physicist

1 / 43

OUTLINE

• Representing Deformable Linear Objects
• Gaussian Mixture Model Clustering
• Expectation-Maximization

• Non-Rigid point set registration
• Measuring the Smoothness of a Functional
• Optimization

• Challenges

2 / 43

MOTIVATION

• As part of the Representing and Manipulating Deformable Linear
Objects (RMDLO) project, one of our goals is to track the shape of
deformable linear objects for manipulation.

Figure 1: Lab setup.

3 / 43

REPRESENTING DEFORMABLE LINEAR OBJECTS

• At each time step, the RGBD camera receives a point cloud of the
DLO that consists of thousands of points.

Figure 2: DLO point cloud received by the RGBD camera, downsampled.

4 / 43

REPRESENTING DEFORMABLE LINEAR OBJECTS

• We can use clustering to reduce the number of samples. By
connecting the adjacent nodes, we can get a piecewise linear curve
that approximates the current shape of the DLO.

Figure 3: The DLO point cloud clustered into 15 nodes.

5 / 43

GAUSSIAN MIXTURE MODEL CLUSTERING

• Gaussian Mixture Model (GMM) clusters data into a finite number of
Gaussian distributions1.

• The parameters of the Gaussian distributions are unknown and need
to be estimated from the data given.

Figure 4: A simple example of GMM-based clustering.

1Bishop et al. 1995
6 / 43

GAUSSIAN MIXTURE MODEL CLUSTERING

• Assume a DLO can be represented by M nodes. The node positions
at time step t are denoted by Yt

M×D = (yt
1, . . . ,yt

m)
T, where yt

m ∈ R3

denotes the position of the mth node.

• The DLO point cloud received by the depth camera at time step t is
denoted by Xt

N×D = (xt
1, . . . , xt

n)
T, where xt

n ∈ R3 denotes the position
of the nth point and there are N points in total.

• The collection of nodes Yt serves as the centroids and the point cloud
Xt are the randomly sampled points from the M Gaussian
distributions.

• We further assume each Gaussian probability distribution has equal
membership probability 1

M and variance σ2.

7 / 43

GAUSSIAN MIXTURE MODEL CLUSTERING

• The probability distribution of Xt then becomes

p(xt
n) =

M∑
m=1

1
M
N (xt

n; yt
m, σ

2I)

=

M∑
m=1

1
M

1
(2πσ2)D/2 exp

(
−
∥xt

n − yt
m∥2

2σ2

)

• The goal of GMM clustering is to estimate the centroid positions Yt

and the variance σ2 that maximizes the probability of observation Xt:

(Yt∗, σ2∗) = argmax
Yt,σ2

(
N∏

n=1

p(xt
n)

)

8 / 43

GAUSSIAN MIXTURE MODEL CLUSTERING

• Maximizing the probability of observation Xt is equivalent to
minimizing its negative log likelihood

L(Yt, σ2|Xt) = − log

(
N∏

n=1

p(xt
n)

)
= −

N∑
n=1

log

(
M+1∑
m=1

p(m)p(xt
n|m)

)

(Yt∗, σ2∗) = argmin
Yt,σ2

L(Yt, σ2|Xt)

• Since the summation inside log(·) makes convex optimization
impossible, we instead minimize its upper bound

E(Yt, σ2) =

N∑
n=1

M∑
m=1

p(m|xt
n) log(p(m)p(xt

n|m))

which simplifies to

E(Yt, σ2) =

N∑
n=1

M∑
m=1

p(m|xt
n)
∥xt

n − yt
m∥2

2σ2 +
log(σ2)D

2

N∑
n=1

M∑
m=1

p(m|xt
n)

9 / 43

EXPECTATION-MAXIMIZATION

• We can solve this optimization problem iteratively using the
Expectation-Maximization algorithm2.

• The centroid positions Yt are initialized to 0 and the variance σ2 is
initialized to 1

DMN

∑M
m=1

∑N
n=1 ∥yt

m − xt
n∥2.

2Dempster, Laird, and Rubin 1977
10 / 43

EXPECTATION-MAXIMIZATION

• E-step:
The probability distribution p(m|xt

n) is calculated from the Yt and σ2

found in the last iteration:

p(m|xt
n) =

exp
(
−∥xt

n−yt
m∥

2

2σ2

)
∑M

m=1 exp
(
−∥xt

n−yt
m∥2

2σ2

)
• M-step:

Plugging the new p(m|xt
n) back into E(Yt, σ2), we can compute Yt and

σ2 by letting ∂E(Yt,σ2)
∂Yt = 0 and ∂E(Yt,σ2)

∂σ2 = 0. We then have

yt
m =

∑N
n=1 p(m|xt

n)xt
n∑N

n=1 p(m|xt
n)

σ2 =

∑N
n=1
∑M

m=1 p(m|xt
n)∥xt

n − yt
m∥2∑N

n=1
∑M

m=1 p(m|xt
n)D

.

11 / 43

EXPECTATION-MAXIMIZATION

• The E-step and the M-step are performed alternately until Yt and σ2

converge.

Figure 5: Clustering results from iterations 1, 10, 15, and 20, respectively.

12 / 43

REPRESENTING DEFORMABLE LINEAR OBJECTS

• To better represent the shape of the DLO, we need to figure out the
connectivity between nodes. We can encode the connectivity
information into Yt by ordering Yt such that adjacent nodes are
connected.

Figure 6: GMM clustering result.

13 / 43

REPRESENTING DEFORMABLE LINEAR OBJECTS

• A naive method is to create a weighted complete graph from the
nodes computed, then find the shortest path visiting all nodes exactly
once.

Figure 7: The complete graph created from a set of nodes.

14 / 43

REPRESENTING DEFORMABLE LINEAR OBJECTS

• A naive method is to create a weighted complete graph from the
nodes computed, then find the shortest path visiting all nodes exactly
once.

Figure 8: The shortest path visiting all nodes exactly once.

15 / 43

REPRESENTING DEFORMABLE LINEAR OBJECTS

• Naive methods do not always work. Consider the scenario below:

Figure 9: Node ordering failure case.

• In some situations, it is not possible to extract the DLO shape from a
single frame of data.

16 / 43

NON-RIGID POINT SET REGISTRATION

• If we have a set of correctly ordered nodes Yt−1 from time step t− 1
and a set of unordered nodes Yt from time step t, how can we find the
correspondence between Yt and Yt−1 so that Yt is correctly ordered?

Figure 10: Red: Correct DLO shape estimate from time step t − 1; Blue:
GMM clustering results from time step t; Gray: All possible M2 matchings.

17 / 43

NON-RIGID POINT SET REGISTRATION

• Non-rigid point set registration: finding correspondence between a
source point set and a target point set. One of the most popular
non-rigid point set registration algorithms is Coherent Point Drift3.

Figure 11: Red: Source point set Yt−1; Blue: Target point set Yt; Gray:
Correspondences.

3Myronenko and Song 2010
18 / 43

NON-RIGID POINT SET REGISTRATION

• CPD: the most probable matching between point sets is the one
which produces the most spatially smooth velocity field.

Figure 12: A non-smooth velocity field produces incorrect matchings.

Figure 13: A smooth velocity field produces good matchings.
19 / 43

MEASURING THE SMOOTHNESS OF A FUNCTIONAL

• To quantitatively measure the smoothness of the velocity field, define
a velocity function v(z) such that Yt = Yt−1 + v(Yt−1). Note that v is a
function of spatial positions, not time.

• One way of measuring the smoothness of a function is by measuring
how oscillatory it is. This is equivalent to passing it through a
high-pass filter in the frequency domain and integrating the resulting
power.

20 / 43

MEASURING THE SMOOTHNESS OF A FUNCTIONAL

Function 1: f1(t) = cos(π2 t) Function 2: f2(t) = cos(4πt)

Figure 14: Plot of f1(t) and f2(t).

21 / 43

MEASURING THE SMOOTHNESS OF A FUNCTIONAL

• We define H(ω) as an ideal high-pass filter with cutoff frequency at 1
rad/s to quantitatively measure the smoothness of f1 and f2:

H(ω) =

{
0 for − 1 < ω < 1

1 otherwise

Figure 15: Ideal high-pass filter H(ω) with cutoff frequency at 1 rad/s.

22 / 43

MEASURING THE SMOOTHNESS OF A FUNCTIONAL

• Function 1:
f1(t) = cos(π2 t) F←→ F1(ω) =

1
2{δ(ω −

1
4) + δ(ω + 1

4)}

Figure 16: Left: Fourier Transform of function 1. Right: Applying H(ω) to
function 1 filters out low-frequency content. Here,

∫∞
−∞ H(ω)F1(ω)dω = 0.

23 / 43

MEASURING THE SMOOTHNESS OF A FUNCTIONAL

• Function 2: f2(t) = cos(4πt) F←→ F2(ω) =
1
2{δ(ω − 2) + δ(ω + 2)}

Figure 17: Left: Fourier Transform of function 2. Right: Applying H(ω) to
function 2 does not filter out anything because function 2’s frequency content
lies in the pass band of H(ω). Here,

∫∞
−∞ H(ω)F2(ω)dω = 1.

24 / 43

MEASURING THE SMOOTHNESS OF A FUNCTIONAL

• Since
∫∞
−∞ H(ω)F1(ω)dω <

∫∞
−∞ H(ω)F2(ω)dω, f1(t) has less high

frequency content.

• The function f1(t) is smoother than the function f2(t).

Figure 18: Comparison of f1(t) and f2(t) in the time domain.

25 / 43

OPTIMIZATION

• The cost function for GMM clustering is

E(Yt, σ2) =

N∑
n=1

M∑
m=1

p(m|xt
n)
∥xt

n − yt
m∥2

2σ2 +
log(σ2)D

2

N∑
n=1

M∑
m=1

p(m|xt
n).

• Replace Yt with Yt−1 + v(Yt−1) and add the smoothness term to the
cost function to obtain

E(v(z), σ2) =

N∑
n=1

M∑
m=1

p(m|xt
n)
∥xt

n − (yt−1
m + v(yt−1

m))∥2

2σ2

+
log(σ2)D

2

N∑
n=1

M∑
m=1

p(m|xt
n)+

λ

2

∫
RD

|ṽ(s)|2

G̃(s)
ds,

where z is a spatial domain variable, s is a frequency domain variable,
ṽ(s) is the Fourier Transform of v(z), 1/G̃(s) is a high-pass filter, and
λ
2 is a parameter weighting the smoothness term in optimization.

26 / 43

OPTIMIZATION

• Specifically, 1/G̃(s) takes the form eβ
2∥s∥2/2 so that G(z) = e−∥s∥2/(2β2)

is Gaussian.

• The parameter β controls the frequency range included in the
high-pass filter.

• Larger β values result in a high-pass filter with a narrower stop band
which produces a smoother velocity field.

Figure 19: High-pass filter 1/G̃(s) with β = 2 and β = 4 respectively.

27 / 43

OPTIMIZATION

• Objective: Find v(z) and σ2 that minimize the cost function E(v(z), σ2).

• Approach: Substitute 1/G̃(s) with eβ
2∥s∥2/2 and recognize

λ
2

∫
RD |ṽ(s)|2/G̃(s)ds is

λ

2

∫
RD

∞∑
l=0

β2l

2ll!
∥Dlv(z)∥2dz =

λ

2
∥Kv(z)∥2

in the spatial domain. Here, D is a derivative operator with
D2lv = ▽2lv and D2l+1v = ▽(▽2lv), K is a pseudo-differential operator
and ∥ · ∥ is the norm operator.

• The cost function then becomes

E(v(z), σ2) =

N∑
n=1

M∑
m=1

p(m|xt
n)
∥xt

n − (yt−1
m + v(yt−1

m))∥2

2σ2

+
log(σ2)D

2

N∑
n=1

M∑
m=1

p(m|xt
n)+

λ

2
∥Kv(z)∥2

.

28 / 43

OPTIMIZATION

• We can solve for v(z) using regularization theory. E(v(z), σ2) can be
divided into two parts, the empirical cost functional Eemp and the
regularizer cost functional Ereg:

Eemp =

N∑
n=1

M∑
m=1

p(m|xt
n)
∥xt

n − (yt−1
m + v(yt−1

m))∥2

2σ2

+
log(σ2)D

2

N∑
n=1

M∑
m=1

p(m|xt
n)

Ereg =
λ

2
∥Kv(z)∥2

• Eemp describes the goodness of fit of Yt to the original data, Xt

• Ereg describes smoothness of the velocity field, v(z)

29 / 43

OPTIMIZATION

• To minimize E(v(z), σ2) = Eemp + Ereg, we need to find v(z) such that
the Fréchet differential of E(v(z), σ2) is zero.

• Definition of the Fréchet differential:

df (x, h) = lim
ϵ→0

f (x + ϵh)− f (x)
ϵ

30 / 43

OPTIMIZATION

• The Fréchet differential for Eemp is

dEemp =
d
dϵ

Eemp(v(z) + ϵh(z))
∣∣∣∣
ϵ=0

= − 1
σ2

M∑
m=1

h(z)
N∑

n=1

(xt
n − (yt−1

m + v(yt−1
m)))p(m|xt

n)

=

〈
h(z), −

M∑
m=1

N∑
n=1

1
σ2 (x

t
n − (yt−1

m + v(yt−1
m)))p(m|xt

n)δ(z− ym)

〉
.

• The Fréchet differential for Ereg is

dEreg =
d
dϵ

(
λ

2

∫ ∞

−∞
K(v(z) + ϵh(z))K(v(z) + ϵh(z))dz

) ∣∣∣∣
ϵ=0

= λ

∫ ∞

−∞
Kh(z)Kv(z)dz

=

〈
Kh(z), λKv(z)

〉
.

31 / 43

OPTIMIZATION

• Following ⟨Kh(z), v(z)⟩ = ⟨h(z), K̃v(z)⟩, we can rewrite dEreg as

dEreg =

〈
Kh(z), λKv(z)

〉
=

〈
h(z), λK̃Kv(z)

〉
where K̃ is the adjoint operator of pseudo-differential operator K.

• dEemp + dEreg = 0 then yields

〈
h(z), λK̃Kv(z)−

M∑
m=1

N∑
n=1

1
σ2 (x

t
n−(yt−1

m +v(yt−1
m)))p(m|xt

n)δ(z−ym)

〉
= 0

The functional h(z) is a constant fixed of z, so for this inner product to
hold,

K̃Kv(z)−
M∑

m=1

N∑
n=1

1
σ2λ

(xt
n − (yt−1

m + v(yt−1
m)))p(m|xt

n)δ(z− ym) = 0

• This is the Euler-Lagrange equation of E(v(z), σ2).

32 / 43

OPTIMIZATION

• The Euler-Lagrange equation of E(v(z), σ2) is

K̃Kv(z) =
M∑

m=1

N∑
n=1

1
σ2λ

(xt
n − (yt−1

m + v(yt−1
m)))p(m|xt

n)δ(z− ym).

• Denote operator L = K̃K. For pseudo-differential operator
∥Kv(z)∥2 =

∫
RD

∑∞
l=0

β2l

2ll!∥D
lv(z)∥2dz, L = K̃K =

∑∞
l=0

(−1)lβ2l

l!2l ▽2l 4.

• Differential function with the form Lf (z) = ϕ(z) has solution
f (z) =

∫
RD G(z− ζ)ϕ(ζ)dζ, where G satisfies LG(z) = δ(z). Therefore,

v(z) =
M∑

m=1

N∑
n=1

1
σ2λ

(xt
n − (yt−1

m + v(yt−1
m)))p(m|xt

n)G(z− ym).

4Chen and Haykin 2002
33 / 43

OPTIMIZATION

• Since L =
∑∞

l=0
(−1)lβ2l

l!2l ▽2l and LG(z) = δ(z), we can solve for G̃(s)
and G(z) through Fourier Transform:

∞∑
l=0

(−1)lβ2l

l!2l ▽2lG(z) = δ(z)

G̃(s) =
1∑∞

l=0
β2l

l!2l ∥s∥2
= e−β2∥s∥2/2; G(z) = e−∥z∥2/(2β2)

• Alternatively, we can write v(z) as

v(z) =
M∑

m=1

wmG(z− ym)

wm =

N∑
n=1

1
σ2λ

(xt
n − (yt−1

m + v(yt−1
m)))p(m|xt

n)

34 / 43

OPTIMIZATION

• Going back to the cost function

E(v(z), σ2) =

N∑
n=1

M∑
m=1

p(m|xt
n)
∥xt

n − (yt−1
m + v(yt−1

m))∥2

2σ2

+
log(σ2)D

2

N∑
n=1

M∑
m=1

p(m|xt
n) +

λ

2

∫
RD

|ṽ(s)|2

G̃(s)
ds

• Define the following notations
• WM×D is the collection of weights, (w1, . . . ,wM)T

• GM×M is the kernel matrix with G(i, j) = G(yi − yj)

• We can now write v(yt−1
m) as G(m, ·)W. Since G is known, we only

need to solve for the weights W.

35 / 43

OPTIMIZATION

• For better readability, denote Xt as X and Yt−1 as Y0. Rewriting
E(v(z), σ2) in matrix form, we get

E(W, σ2) =
1

2σ2 {tr(X
Td(PT1)X)− 2tr(YT

0 PX)− 2tr(WTGPX)

+ tr(YT
0 d(P1)Y0) + 2tr(WTGd(P1)Y0) + tr(WTGd(P1)GW)}

+
D
2

1TP1 log(σ2) + tr(WTGW),

where
• PM×N is the posteriori probability matrix with entries P(m, n) = p(m|xt

n)

• d(a) is the diagonal matrix constructed from vector a
• tr(m) is the trace of matrix m
• 1 is a column vector of ones

36 / 43

OPTIMIZATION

• E-step:
The posteriori probability matrix P is calculated from the Yt and σ2

found in the last iteration:

P(m,n) =
exp

(
−∥xt

n−yt
m∥

2

2σ2

)
∑M

m=1 exp
(
−∥xt

n−yt
m∥2

2σ2

)
• M-step:

Plugging the new P back into E(W, σ2), we can compute W and σ2 by
letting ∂E(W,σ2)

∂W = 0 and ∂E(W,σ2)
∂σ2 = 0. We then have

W =
(
d(P1)G + λσ2I

)−1 · (PX− d(P1)Y0)

σ2 =
1

1TP1D
(tr(XTd(PT1)X)− 2tr((PX)T(Y0 + GW))

+ tr((Y0 + GW)Td(P1)(Y0 + GW)))

• The final solution is Yt = Yt−1 + GW.

37 / 43

OPTIMIZATION

Similar to GMM clustering, we repeat the Expectation-Maximization
process until W and σ2 converge.

Figure 20: Non-rigid registration result for iteration 0, 1, 2, 4, 6, and 8,
respectively.

38 / 43

CHALLENGES

• Every cost term added to E(W, σ2) must be optimized through EM.

• Consider a length preservation constraint restricting the total length of
the predicted DLO to length L. This leads to the cost term∥∥∥∥M−1∑

m=1

∥∥(yt−1
m+1 + v(yt−1

m+1))− (yt
m + v(yt−1

m))
∥∥2 − L

∥∥∥∥2

which cannot be written into the form of ⟨h(z), f (z)⟩ for computing the
Fréchet differential.

• Physical properties of the DLO are often only considered in
post-processing.

39 / 43

CHALLENGES

One of the major drawbacks of treating DLO tracking as a non-rigid
point set registration algorithm: the physical properties of the object
are not explicitly represented. Existing DLO tracking methods use
different techniques to overcome this issue:

• CPD+Physics (2017) and Structure Preserved Registration (2019) use
physics simulators for post-processing.

• Structure Preserved Registration (2019) and Constrained Deformable
Coherent Point Drift (2019) adds locally linear embedding as an
additional cost term in the EM process to preserve local topology.

• Constrained Deformable Coherent Point Drift (2019) and Constrained
Deformable Coherent Point Drift 2 (2021) use constrained optimization
for DLO length preservation in post-processing.

• Constrained Deformable Coherent Point Drift 2 (2021) uses gripper
motion information to predict the shape of DLO.

40 / 43

TAKEAWAYS

• For any additional cost terms added to the non-rigid point set
registration process, v(z) =

∑M
m=1 wmG(z− ym) must still

minimize the total cost.

• Existing algorithms add convex constraints and post-processing
steps to improve tracking performance without changing the cost
functional in EM.

41 / 43

ACKNOWLEDGEMENTS

• I would like to thank my collaborators Holly Dinkel, Harry Zhao,
Naixiang Gao, Brian Coltin, Trey Smith, and Tim Bretl for their
technical support and valuable feedback.

42 / 43

TRACKDLO SOFTWARE

Scan the below QR code to check out our software!

URL: https://github.com/RMDLO/trackdlo

43 / 43

https://github.com/RMDLO/trackdlo

