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Abstract

Many methods exist to track the shape of deformable lin-
ear objects given a continuous stream of RGB-D frames.
However, these methods often fail to output a reasonable
shape estimate when the tracked object is partially oc-
cluded. This project investigates the potential approach of
imputing the displacement field for the occluded portion of
the deformable object. The displacement field imputation is
achieved by extending Geodesic-Based Coherent Point Drift
to incorporate correspondence priors.

1. Introduction

This project implements and extends the Geodesic-
Based Bayesian Coherent Point Drift (GBCPD) algorithm
for real-time tracking of deformable linear object (DLO)
(e.g., rope, wire, string) shapes [11]. Monitoring the shape
of deformable objects is essential to manipulation tasks
such as knot tying or wire routing, or to monitor wires and
cables for collision prevention [13,15,27–30]. These canon-
ical tasks are common in applications like robotic surgery,
industrial automation, power line avoidance, and human
habitat maintenance [3, 8, 14, 16, 25]. Deformable object
shape tracking is challenging in this context because cloth,
ropes, and cables are often featureless and prone to occlu-
sion and self-occlusion. Instead of incorporating physics
simulators for DLO tracking, which could be computation-
ally expensive and difficult to tune, this project investigates
imputing the displacement of the occluded portion of the
object based on the displacement of the visible portion of
the object as a potential approach. In summary, this project
achieves the following:

1. This project implements Geodesic-Based Bayesian
Coherent Point Drift and integrates it with our previ-
ous work on DLO shape tracking, the TrackDLO algo-
rithm (under review).

2. This project extends Geodesic-Based Bayesian Coher-
ent Point Drift to take account into correspondence pri-

Figure 1. Geodesic-Based Coherent Point Drift combined with
our previous work, the TrackDLO algorithm, accurately tracks the
shape of a DLO moving under occlusion. In the left image, all
point cloud in the occluded region is removed.

ors (only partially completed at the time of submission,
see details in Sec.3.3).

3. The performance of the proposed method is evaluated
and compared to that of the existing methods.

4. The code and data used in this project are available at
https://github.com/jingyi-xiang/bcpd-dlo-tracking.

2. Related Work

The Coherent Point Drift (CPD) algorithm performs
non-rigid registration to map one set of points onto an-
other. The CPD algorithm uses Gaussian Mixture Model
(GMM) clustering and Motion Coherence Theory (MCT)
with Expectation-Maximization (EM) to find the probabil-
ity distribution parameters which maximize the likelihood
that a predicted point set corresponds to the original point
set [5, 17, 18, 31].

Coherent Point Drift forms the foundation for several
algorithms which perform DLO tracking under occlusion.
The CPD+Physics algorithm uses CPD for node registration
and simulates the DLO in a physics engine to update the ob-
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ject’s shape estimate [21]. Building on top of CPD+Physics,
Structure Preserved Registration (SPR) adds in modified lo-
cally linear embedding for more accurate tracking results.
Another algorithm is Constrained Deformable CPD (CD-
CPD), which uses locally linear embedding combined with
CPD for non-rigid registration, enforces an object stretching
constraint, and detects and recovers from tracking failure
[2]. The CDCPD2 algorithm builds on top of CDCPD and
incorporates the diminishing rigidity DLO physics model,
self-intersection constraints, and obstacle interaction con-
straints to improve tracking under tip occlusion and large-
scale occlusion [26]. Recently, we proposed the TrackDLO
algorithm (under review), which exploits the motion coher-
ence regularization embedded in CPD to impute the dis-
placement of the occluded portion of the DLO from the dis-
placement of the visible portion of the DLO. Our method
demonstrated more robustness under various types of oc-
clusions compared to existing methods.

Since the release of the initial CPD paper in 2006, there
have been many subsequent non-rigid registration papers
that improve CPD’s registration accuracy and computation
speed, one being Geodesic-Based Bayesian Coherent Point
Drift (GBCPD) [11]. The GBCPD algorithm’s various
modifications to the original CPD algorithm inspired this
project to investigate its performance when applied to DLO
tracking. Our previous work, the TrackDLO algorithm,
consists of two parts: a pre-processing step followed by
a CPD-based registration. This project replaces the CPD-
based registration in TrackDLO with a GBCPD-based one.

3. Methods
3.1. Problem Formulation

For N points of dimension D received at time t from
a depth sensor, X = {x1, . . . ,xN}, the DLO shape is
represented with a collection of M ordered nodes, Y =
{y1, . . . ,yM} and the M − 1 edges connecting the ad-
jacent nodes. The measurement X can contain outliers
due to noise and it can be incomplete due to occlusion.
Usually M ≪ N . The objective of DLO shape track-
ing is to estimate Y given the current measurement of X
and the previous estimation of Y . Many existing litera-
ture treats DLO shape tracking as a non-rigid registration
problem [4, 21–23, 26]. The rest of the methods section
is structured as follows: Sec.3.2 gives an overview of the
Geodesic-Based Bayesian Coherent Point Drift algorithm
[11], Sec.3.3 goes over our modifications to GBCPD which
makes it compatible with the TrackDLO algorithm, and
Sec.3.4 discusses some of the implementation details.

3.2. Geodesic-Based Bayesian Coherent Point Drift

The GBCPD algorithm computes the alignment between
X and Y through variational inference. It considers Y (the

source point set) as the centroids of a Gaussian mixture
model (GMM) andX (the target point set) as the data points
to be fitted to. Besides estimating the locations of Y , the
correct correspondence between X and Y also needs to be
computed. Let T be a function that deforms Y to match
with the shape of X , GBCPD defines T as a combination
of similarity and non-rigid transformation:

T (ym) = sR(ym + vm) + t (1)

where s is a scale factor, R is a rotation matrix, t is a trans-
lation vector, and v is a displacement field representing the
non-rigid transformation with vm being the displacement
vector for ym. If xn corresponds to ym, xn is generated
from a Gaussian distribution with covariance matrix σ2ID
centered at T (ym). The probability of xn being an out-
lier is ω and outliers are generated from a distribution pout.
To compute the transformation T and the correspondence
between the source point set Y and the target point set X ,
GBCPD defines the following notations:

• xDN×1 = (xT
1 , . . . ,x

T
N )T – the vector representation

of the target point set X = {x1, . . . ,xN}.
• yDM×1 = (yT

1 , . . . ,y
T
M )T – the vector representation

of the source point set Y = {y1, . . . ,yM}.
• vDM×1 = (vT

1 , . . . ,v
T
M )T – the vector representation

of the displacement field that deforms Y .
• cn ∈ {0, 1} – an indicator variable where cn = 1 only

if the xn is not an outlier.
• en ∈ {0, . . . ,M}N – an index variable representing

that xn corresponds to ym if en = m.
• αm ∈ [0, 1]M – the probability of event en = m for

any n which satisfies
∑M

m=1 αm = 1.
• ϕ(z;µ,S) – a multivariate Gaussian distribution with

mean vector µ and covariance S.
• ρ = (s,R, t) – the similarity transformation parame-

ters.
The joint distribution of (xn, cn, en) given

(y,v, α, ρ, σ2) can then be modeled as

p(xn, cn, en|y,v, α, ρ, σ2)

= {ωpout(xn)}1−cn

{
(1− ω)

M∏
m=1

(αmϕmn)
δm(en)

}cn

(2)

where δm(en) = 1 if en = m and 0 otherwise. Addition-
ally, ϕmn is the abbreviation of a Gaussian distribution that
takes the form

ϕmn = ϕ(xn;ym, σ
2ID)

= |2πσ2ID|−1/2 exp

(
− 1

2σ2
∥xn − T (ym)∥2

)
(3)

Without posing any constraints on the displacement field
v, the problem is ill-posed. One method to resolve this is
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to require the displacement field to be as smooth as possi-
ble, as stated in the Motion Coherence Theory [31]. Unlike
the original Coherent Point Drift algorithm which incorpo-
rates motion coherence as a regularization term, GBCPD
models motion coherence with a prior distribution of v.
Suppose G is a positive definite matrix with its elements
G(i, j) = K(yi,yj) and K is a positive definite kernel, the
prior distribution is formulated as follows:

p(v|y) = ϕ(v; 0, λ−1G⊗ ID) (4)

where ⊗ is the Kronecker product. The Motion Coherence
Theory states that features close to each other in space are
more likely to move in similar directions and speeds; this
prior distribution encodes that since vi and vj correlates
with each other if K(yi,yj) is large enough. The GBCPD
algorithm further assumes p(α) is a Dirichlet distribution
characterized by a parameter κ:

p(α) = Dir(α|κ1M ) (5)

where 1M is a column vector of 1 s.
Denote the set of latent variables that need to be esti-

mated as θ = (v, α, c, e, s,R, t, σ2), GBCPD defines the
full joint distribution p(x,y, θ) as

p(x,y, θ) ∝ p(v|y)p(α)
N∏

n=1

p(xn, cn, en|y, α, ρ, σ2)

(6)
The GBCPD algorithm then estimates a set of reason-

able θ using variational inference. The posterior distribution
p(θ|x,y) is approximated with a distribution q(θ) through
which the expectation can be easily computed:

q(θ) = q1(v, α)q2(c, e)q3(ρ, σ
2) (7)

After initialization, q1, q2, and q3 are updated one at a time
with the other two q fixed. The update step is repeated until
q(θ) converges. The GBCPD algorithm defines the follow-
ing notations for the update equations:

• PM×N – the posterior probability matrix where
P(m,n) represents the probability that xn corre-
sponds to ym.

• νM×1 = (ν1, . . . , νM )T with νm =
∑N

n=1 P(m,n)
– the estimated number of target points matched with
each source point.

• ν′
N×1 = (ν′1, . . . , ν

′
N )T with νn =

∑M
m=1 P(m,n) –

the probability that xn is a non-outlier.
• N̂ =

∑N
n=1

∑M
m=1 P(m,n) – the estimated number

of points in X that match to Y .
• M̃ = M ⊗ 1D – tilde symbol on top of a matrix in-

dicates the Kronecker product of itself with a column
vector of 1 s.

• ψ – the digamma function.

The update of q1(v, α) updates the following variables:

αm = exp(ψ(κ+ νm)− ψ(κM + N̂)) (8)

Σ−1 = λG−1 +
s2

σ2
d(ν) (9)

x̂ = d(ν̃)−1P̃x (10)

v̂ =
s2

σ2
Σ̃d(ν̃)(T̃

−1
(x̂)− y) (11)

û = y + v̂ (12)
ŷ = s(IM ⊗R)(y + v̂) + 1M ⊗ t (13)

The update of q2(c, e) updates the posterior probability
matrix P:

⟨ϕmn⟩ = ϕ(xn; ŷm, σ
2ID) exp(−s

2D

2σ2
Σ(m,m)) (14)

P(m,n) =
(1− ω)αm⟨ϕmn⟩

ωpout(xn) + (1− ω)
∑M

m′=1 αm′⟨ϕm′n⟩
(15)

The update of q3(ϕ, σ2) updates s, R, t, and σ2:

R̂ = Φd(1, . . . , 1, |ΦΨT |)ΨT (16)

ŝ = tr(R̂
T
Sxu)/tr(Suu) (17)

t̂ = x̄− ŝR̂ū (18)

σ̂2 =
1

N̂D
(xTd(ν̃′)x− 2xT P̃

T
ŷ + ŷTd(ν̃)ŷ) + ŝ2σ̄2

(19)

where

x̄ =
1

N̂

M∑
m=1

νmx̂m, ū =
1

N̂

M∑
m=1

νmûm (20)

σ̄2 =
1

N̂

M∑
m=1

νmΣ(m,m)2 (21)

Sxu =
1

N̂

M∑
m=1

νm(x̂m − x̄)(ûm − ū)T (22)

Suu =
1

N̂

M∑
m=1

νm(ûm − ū)(ûm − ū)T + σ̄2ID (23)

The final output of GBCPD is ŷ = s(IM ⊗R)(y+ v̂)+
1M ⊗ t.

3.3. Incorporating Correspondence Priors

When tracking the shape of a DLO, the point cloud X
received at each frame is often incomplete due to occlu-
sion. This occlusion can be caused by robotic manipulators,
other objects in the scene, or the DLO itself. The occluded
nodes in Y often do not contribute to generating points in
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Figure 2. By “pinning” visible nodes in Y t−1 onto their known
correspondences in Xt (solid line arrows), the displacement field
of the occluded node in Y t−1 can be imputed (dashed line arrows).

X . In this case, the displacement of the occluded nodes is
mostly regulated by the Motion Coherence Theory which
correlates their displacement with that of their neighboring
visible nodes.

To help address the DLO tracking under occlusion prob-
lem, we assume that the DLO being tracked can deform
but cannot be stretched or compressed. As a result, its
total length and segment lengths (distance between ad-
jacent nodes) should remain unchanged during deforma-
tion. In our previous work, TrackDLO, we proposed a pre-
processing step that estimates the new locations of the vis-
ible nodes such that the segment distances are preserved
if the visible nodes are aligned to these estimated loca-
tions during the registration step. Since motion coherence
is encoded in CPD and GBCPD, the displacement of the
occluded nodes will be imputed from the displacement of
the visible nodes if the visible nodes are “pinned” to these
estimated locations. This concept is showcased in Fig.2.
To save space, we will not go into detail about this pre-
processing process.

Implementing the above pipeline requires modification
to the original GBCPD algorithm so it takes into account
that selected nodes in Y should be aligned with selected
points in X . Suppose we have pre-computed the alignment
of the visible nodes. Let (xa,yb) be the pre-computed cor-
respondence priors andNc be the collection of indices (a, b)
of all correspondence priors. To incorporate these known
alignments with desired displacement field, we follow the
formulation in Extended Coherent Point Drift [6] and model
this as a product of independent density functions:

Pc(Nc) =∏
(a,b)∈Nc

|2πζID|−1/2 exp

(
− 1

2σ2
∥xa − T (yb)∥2

)
(24)

where the parameter ζ indicates the priors’ degree of relia-
bility. The smaller ζ is, the closer xa and yb will be aligned
in the final registration result. We add Pc(Nc) to (6) and

Algorithm 1 GBCPD with Correspondence Priors
Input: X , Y , Nc

Xc ← the collection of all xa that satisfies (a, ·) ∈ Nc

Yc ← the collection of all yb that satisfies (·, b) ∈ Nc

s,R, t← GBCPD (X = Xc, Y = Yc)
X ′ ← R−1(X − t)/s
X ′

c ← R−1(Xc − t)/s
N ′

c ← new corr. priors constructed with X ′
c and Yc

Ynew ← Extended GBCPD
(X = X ′, Y = Y , Nc = N ′

c)
Ynew ← sR(Ynew) + t
Return Ynew

Algorithm 2 TrackDLO + GBCPD
1: while detecting target DLO in RGB-D stream do
2: Xt ← segment and downsample DLO pointcloud
3: Y t

c ← the visible nodes in Y t−1, Y t
c ⊆ Y t−1

4: Xt
c ← estimated locations of Y t

c such that segment
5: distances are preserved
6: Xt ← Xt ∪Xt

c

7: Nc ← compute corr. priors between Xt and Y t−1

8: such that Xt
c corresponds to Y t

c

9: Y t ← GBCPD with correspondence priors
10: (X = Xt, Y = Y t−1, Nc = Nc)
11: end while

obtain

p(x,y, θ) ∝

p(v|y)p(α)Pc(Nc)

N∏
n=1

p(xn, cn, en|y, α, ρ, σ2)
(25)

This modification affects the GBCPD update equations
for q1 and q3. We follow the same derivation process in
that of GBCPD to derive the new update equation for q1
[10]. Here we directly give the results. Let matrix JM×N

be a matrix encoding the correspondence between X and
Y , where J(a, b) = 1 if (a, b) ∈ Nc and 0 otherwise. We
also define a new variable νc = J1N analogous to ν. The
new update equations for Σ and v̂ are

Σ−1 = λG−1 +
s2

σ2
d(ν) +

s2

ζ
d(νc) (26)

v̂ =
s2

σ2
Σ̃d(ν̃)(T̃

−1
(x̂)− y)

+
s2

ζ
Σ̃d(ν̃c)(T̃

−1
(J̃x)− y)

(27)

Due to the time constraint on this project, we were only
able to derive the new update equation for q1 in time. With-
out proper update equations for q3 and therefore s, R, and
t, the similarity transformation in (1) is ignored altogether
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Figure 3. The geodesic distance ρi,j (orange, right) better repre-
sents the distance between nodes describing the shape of a DLO
than the Euclidean distance ∥yt

m,yt
i∥ (green, left).

and T (ym) reduces to ym+vm. We still estimate the simi-
larity transformation parameters by applying GBCPD twice
per registration, once including the similarity transforma-
tion but not the correspondence priors and once including
the correspondence priors but not the similar transforma-
tion. The process is described in detail in Alg.1. For read-
ability, we temporarily refer to our modified GBCPD algo-
rithm as Extended GBCPD, analogous to Extended Coher-
ent Point Drift. Extended GBCPD takes into account corre-
spondence priors but has fixed s = 1, R = ID, and t = 0.

The intuition of Alg.1 is that after computing s, R, and t
between all points in Y that have correspondences and their
correspondences inX , we reverse the similarity transforma-
tion to obtain the displacement field of points in Y that have
correspondences (visible nodes in the context of DLO track-
ing). We can then use Extended GBCPD to impute the dis-
placement field of points in Y that do not have correspon-
dences (occluded nodes in the context of DLO tracking).
Finally, this imputed displacement field, combined with the
transformation parameters computed from the first GBCPD
registration, gives the final new locations of Y using (1).

The full DLO tracking pipeline that utilizes GBCPD
with correspondence priors is described in Alg.2. The final
registration step in line 9, which uses CPD with correspon-
dence priors in our previous work, now uses the proposed
modified GBCPD algorithm with correspondence priors.

3.4. Kernel used for Motion Coherence

The kernel K used in the motion coherence matrix G
directly affects the displacement field imputation results. In
this project, we use a kernel of the following form:

K(yi,yj) = 0.005e−∥ρi,j∥/(2β2)

+ 0.995
1

2β2
e−2∥ρi,j∥/β(2∥ρi,j∥+ β)

(28)

where ρi,j is the approximated geodesic distance between
yi and yj . As shown in Fig.3, ρi,j is defined as:

ρyi,yj
=

{∑i−1
m=j ∥ym+1 − ym∥ if j ≤ i∑j−1
m=i ∥ym+1 − ym∥ if j > i

. (29)

Figure 4. The frame error is the average of the errors from the
left and right images. (Left) Node-to-PWL curve ε(Y t, Y t

true).
(Right) Node-to-PWL curve ε(Y t

true, Y
t).

The above kernel is a weighted sum of the Laplacian ker-
nel and the kernel used in TrackDLO. Currently, the above
kernel form is selected based on intuition and limited test-
ing. Further study is required to unveil the connection be-
tween different kernel forms and how they affect the motion
coherence between nodes.

4. Experiments
We conducted experiments to compare the performance

of TrackDLO+GBCPD, TrackDLO, CDCPD2 with and
without optional gripper information, and CDPCD algo-
rithms for DLO tracking under occlusion. Among the four
algorithms tested in three scenarios, TrackDLO+GBCPD
demonstrated the lowest node-to-PWL curve frame error in
two out of the three scenarios (Sec.4.1). We also analyze the
effect of the similarity transformation in GBCPD on track-
ing accuracy (Sec.4.2). For all experiments below, we used
λ = 40, ω = 0, κ = 1 × 1016, ζ = 1 × 10−8, and con-
vergence tolerance = 0.0001. We initialized σ2 with the σ2

from the last time step multiplied by a scale factor γ = 1.2.
For experiments in Sec.4.1 where a long rope was used, we
used β = 5. For experiments in Sec.4.2 where a short rope
was used, we used β = 2. We also fix the scale s at 1 in
GBCPD.

4.1. Tracking Error

We conducted experiments to compare the performance
of TrackDLO+GBCPD, TrackDLO, CDCPD2 with and
without optional gripper information, and CDPCD algo-
rithms in three different scenarios. These scenarios include:

1. Stationary–A curved rope lies stationary on a table.
This scenario tests tracking error accumulation and
length preservation under tip occlusion.

2. Perpendicular Motion–A robot arm with a gripper
moves the tip of a curved rope in a direction perpen-
dicular to the tip while the mid-section is occluded.
This scenario tests tracking accuracy when both tips of
the rope are visible while the mid-section is occluded.
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Figure 5. TrackDLO+GBCPD accurately estimates the state of the DLO under scaled, tip, and mid-section occlusion in the three evaluation
scenarios as compared to the original TrackDLO, CDCPD2 with and without gripper information, and CDCPD. Among the algorithms
evaluated, TrackDLO+GBCPD had the lowest frame error in the Stationary and Parallel Motion case, while TrackDLO had the lowest
frame error in the Perpendicular Motion case. The background of the plots are colored so that light purple indicates tip occlusion and light
gray indicates mid-section occlusion.

3. Parallel Motion–A robot arm with a gripper moves the
tip of the rope through occlusion in a direction paral-
lel to the tip. This scenario tests length preservation
and tracking accuracy when one tip of the rope moves
through occlusion.

For each scenario, point cloud and RGB image data were
collected and saved in a Robot Operating System (ROS) bag
file which was used for evaluation. Occlusion was injected
by removing pixels within a bounding box area in the DLO
segmentation mask. The blue rope was evenly marked with
red tape which was segmented by thresholding on the red
and blue colors. In each of the red and blue segmentation
masks, contour filtering and blob detection detected the blue
and red segments along the rope, and keypoint detection re-
turned their centroids. These L centroids were combined to
form Y t

true, the ground truth DLO nodes, which were com-
pared to the M track nodes in Y t. Note the markers on

the rope were only used for evaluation purposes and they
are not required by any algorithm for tracking. Each ex-
periment was repeated 10 times for each algorithm in each
scenario.

Tracking performance is evaluated using a frame error
metric, defined as follows and depicted in Fig.4. The set of
points PWL(Y ) in the Piecewise Linear (PWL) curve rep-
resentation of an ordered node sequence Y includes both the
nodes themselves and all points in the line segments con-
necting consecutive nodes. We define the point-set distance

d(y,S) = inf
y′∈S

∥y − y′∥ (30)

where y is a point and S is a set of points. Then the per-
node error between two node sequences is defined as

ε(Y t, Y t
true) =

1

M

∑
yt
i∈Yt

d(yt
i,PWL(Y t

true)) (31)

6



Figure 6. TrackDLO+GBCPD with rigid transformation (fix s = 1, update R and t) demonstrated the most accurate displacement field
imputation result. When similarity transformation is used instead, the tracking result shrinks in length, potentially because the scale s is
not fixed at 1. When no transformation is included, the tracking result is not smooth and contains kinks.

and the frame error metric mirrors this per-node error to
guarantee symmetry:

E(Y t
true, Y

t) =
1

2

(
ε(Y t

true, Y
t) + ε(Y t, Y t

true)
)

(32)

Evaluation results are reported in Figure 5. In the Sta-
tionary scenario, occlusion is injected at t = 5s and
half of the DLO is then occluded for 20 seconds. The
TrackDLO+GBCPD algorithm achieves the lowest average
frame error for the Stationary scenario. In the Perpendicu-
lar Motion scenario, occlusion is injected in the mid-section
of the rope three seconds after tracking begins before the
rope begins to move and remains there until the end of the
bag file. For the CDCPD2 and CDCPD algorithms, the er-
ror increases after the injection of occlusion and decreases
as the tracking estimates begin to catch up with the wire
state. The TrackDLO algorithm achieves the lowest aver-
age frame error in this scenario. In the Parallel Motion sce-
nario, the rope begins in an unoccluded state and the gripper
moves the rope tip through an occluded region. Tracking
error increases for all algorithms until the rope tip becomes
visible again during the mid-section occlusion period. The
TrackDLO+GBCPD algorithm achieves the lowest frame
error in this scenario.

One interesting phenomenon worth noting is the two er-
ror drops at t = 5.5s and t = 20s for TrackDLO+GBCPD
in the Stationary scenario. All other algorithms in this
scenario, except for CDCPD which failed completely, had
monotonically increasing errors as functions of time. This
is because these algorithms update the location of nodes
with yt

m = yt−1
m + vm; once the error accumulates it is

irreversible. The similarity transformation parameters esti-
mated in GBCPD, which do not depend on their previous
estimated values, help correct the accumulated errors in Y .

4.2. Rigid vs. Similarity Transformation

We conducted experiments to investigate the effect of the
similarity transformation in GBCPD’s deformation model.
We ran TrackDLO+GBCPD on three different settings:

1. Fix s = 1, update R and t – this setup reduces the
similarity transformation to a rigid transformation.

2. Update s, R, and t – this is the original setup in
GBCPD.

3. Fix s = 1, R = ID, t = 0 – this setup ignores the sim-
ilarity transformation completely and the deformation
model reduces to yt

m = yt−1
m + vm.

For the experiment setup, we used the following sce-
nario: a short rope is initially folded and one half of the rope
is moved upwards, away from the other half. Occlusion is
injected over the mid-section of the rope once it begins to
move. This scenario tests the accuracy of displacement field
imputation for occluded nodes produced by the three above
settings, while the DLO is moving.

The experiment results are reported in Fig.6. When the
scale s in (1) is fixed at 1 and therefore rigid transformation
is used, the imputed displacement field is the most accurate.
When similarity transformation is used instead, the tracking
result shrinks in length, potentially because the scale s can
drop below 1 and therefore shrinks the object size. When no
transformation is included, the tracking result is not smooth
and contains kinks. The results show the importance of in-
cluding the rotation matrix R and the translation vector t
in the deformation model. Since we assume the DLO has
fixed total and segment lengths, it is reasonable to fix the
scale at 1.

5. Conclusions and Future Work

This project extends the Geodesic-Based Bayesian Co-
herent Point Drift algorithm and integrates it with our previ-
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ous work, TrackDLO. The GBCPD algorithm demonstrated
potential for being used in DLO shape tracking as the com-
bination of TrackDLO and GBCPD leads to improved re-
sults in the failure cases of the original TrackDLO algo-
rithm. The math principles behind GBCPD still need to
be studied rigorously for deriving the closed-form similar-
ity transformation parameter update equations when corre-
spondence priors are incorporated. Future work could also
investigate how different kernels affect motion coherence.
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Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del Rı́o,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,

Christoph Gohlke, and Travis E. Oliphant. Array Program-
ming with NumPy. Nature, 585:357–362, 2020. 8

[10] O. Hirose. A bayesian formulation of coherent point drift.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(07):2269–2286, jul 2021. 4

[11] Osamu Hirose. Geodesic-based bayesian coherent point
drift. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 1, 2

[12] John D. Hunter. Matplotlib: A 2D Graphics Environment.
Comput. Sci. Eng., 9(3):90–95, 2007. 8

[13] Shiyu Jin, Wenzhao Lian, Changhao Wang, Masayoshi
Tomizuka, and Stefan Schaal. Robotic Cable Routing with
Spatial Representation. In IEEE Robot. Autom. Lett., vol-
ume 7, pages 5687–5694, Apr. 2022. 1

[14] Azarakhsh Keipour, Maryam Bandari, and Stefan Schaal.
Efficient Spatial Representation and Routing of Deformable
One-Dimensional Objects for Manipulation. IEEE/RSJ Int.
Conf. Intell. Robot. Sys. (IROS), pages 211–216, 2022. 1

[15] Romain Lagneau, Alexandre Krupa, and Maud Marchal.
Automatic Shape Control of Deformable Wires Based on
Model-Free Visual Servoing. In IEEE Robot. Autom. Lett.,
volume 5, pages 5252–5259, Oct. 2020. 1

[16] Bo Lu, Henry K Chu, and Li Cheng. Dynamic Trajectory
Planning for Robotic Knot Tying. In IEEE Int. Conf. Real-
Time Comput. Robot. (RCAR), pages 180–185, 2016. 1

[17] Andriy Myronenko and Xubo Song. Point Set Registration:
Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. In-
tell., 32(12):2262–2275, 2010. 1

[18] Andriy Myronenko, Xubo Song, and Miguel Carreira-
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