TrackDLO: Tracking Deformable Linear Objects Under Occlusion with Motion Coherence
IEEE Robotics and Automation Letters, Aug 2023
The TrackDLO algorithm estimates the shape of a Deformable Linear Object (DLO) under occlusion from a sequence of RGB-D images. TrackDLO is vision-only and runs in real-time. It requires no external state information from physics modeling, simulation, visual markers, or contact as input. The algorithm improves on previous approaches by addressing three common scenarios which cause tracking failure: tip occlusion, mid-section occlusion, and self-occlusion. This is achieved through the application of Motion Coherence Theory to impute the spatial velocity of occluded nodes, the use of the topological geodesic distance to track self-occluding DLOs, and the introduction of a non-Gaussian kernel that only penalizes lower-order spatial displacement derivatives to reflect DLO physics. Improved real-time DLO tracking under mid-section occlusion, tip occlusion, and self-occlusion is demonstrated experimentally. The source code and demonstration data are publicly released.